Surface dimming by the 2013 Rim Fire simulated by a sectional aerosol model
نویسندگان
چکیده
The Rim Fire of 2013, the third largest area burned by fire recorded in California history, is simulated by a climate model coupled with a size-resolved aerosol model. Modeled aerosol mass, number, and particle size distribution are within variability of data obtained from multiple-airborne in situ measurements. Simulations suggest that Rim Fire smoke may block 4-6% of sunlight energy reaching the surface, with a dimming efficiency around 120-150 W m-2 per unit aerosol optical depth in the midvisible at 13:00-15:00 local time. Underestimation of simulated smoke single scattering albedo at midvisible by 0.04 suggests that the model overestimates either the particle size or the absorption due to black carbon. This study shows that exceptional events like the 2013 Rim Fire can be simulated by a climate model with 1° resolution with overall good skill, although that resolution is still not sufficient to resolve the smoke peak near the source region.
منابع مشابه
Climate response due to carbonaceous aerosols and aerosol-induced SST effects in NCAR community atmospheric model CAM3.5
This study used the Community Atmospheric Model 3.5 (CAM3.5) to investigate the effects of carbonaceous aerosols on climate. The simulations include control runs with 3 times the mass of carbonaceous aerosols as compared to the model’s default carbonaceous aerosol mass, as well as no-carbon runs in which carbonaceous aerosols were removed. The slab ocean model (SOM) and the fixed sea surface te...
متن کاملA Risk-Based Framework for Assessing the Effectiveness of Stratospheric Aerosol Geoengineering
Geoengineering by stratospheric aerosol injection has been proposed as a policy response to warming from human emissions of greenhouse gases, but it may produce unequal regional impacts. We present a simple, intuitive risk-based framework for classifying these impacts according to whether geoengineering increases or decreases the risk of substantial climate change, with further classification b...
متن کاملGlobal impact of smoke aerosols from landscape fires on climate and the Hadley circulation
Each year landscape fires across the globe emit black and organic carbon smoke particles that can last in the atmosphere for days to weeks. We characterized the climate response to these aerosols using an Earth system model. We used remote sensing observations of aerosol optical depth (AOD) and simulations from the Community Atmosphere Model, version 5 (CAM5) to optimize satellitederived smoke ...
متن کاملDo climate models reproduce observed solar dimming and brightening over China and Japan?
[1] Previous research indicates that clear‐sky downward solar radiation measured at the surface over China significantly decreased by about −8.6 W m per decade during 1961–1989 and insignificantly increased during 1990–1999. Furthermore, solar radiation over Japan remained relatively constant during 1971–1989 and significantly increased by +5.3 W m per decade during 1990–1999. The present study...
متن کاملImpacts of wind stilling on solar radiation variability in China
Solar dimming and wind stilling (slowdown) are two outstanding climate changes occurred in China over the last four decades. The wind stilling may have suppressed the dispersion of aerosols and amplified the impact of aerosol emission on solar dimming. However, there is a lack of long-term aerosol monitoring and associated study in China to confirm this hypothesis. Here, long-term meteorologica...
متن کامل